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The stability of the buoyancy-driven parallel shear flow of a variable-viscosity 
Newtonian fluid between vertical or inclined plates maintained a t  different 
temperatures is studied theoretically. The analysis is capable of dealing with 
arbitrary viscosity-temperature relations. Depending on the Prandtl number, angle 
of inclination, and form of the viscosity-temperature variation, the flow may become 
unstable with respect to two-dimensional longitudinal or transverse disturbances. 
Outstanding questions arising in previous investigations of the stability of parallel 
free-convection flows of constant-viscosity fluids in inclined slots and of variable- 
viscosity fluids in vertical slots are discussed. We find that, in a variable-viscosity 
fluid, non-monotonic dependence of the critical Rayleigh number on the inclination 
angle can occur a t  significantly higher Prandtl numbers than is possible in the 
constant-viscosity case. Results are also presented for the stability of the free- 
convection flow of several glycerol-water solutions in an inclined slot. 

1. Introduction 
Free convection in vertical and inclined slots and its dependence on geometry, 

Prandtl number (Pr) ,  and Rayleigh number are of practical importance in a number 
of heat transfer, materials processing, and other applications. The stability of the 
various flow regimes and the transitions between them have important consequences 
for the relevant technological processes. For current reviews, the reader is referred to 
Catton (1978), Ostrach (1982), Raithby & Hollands (1985), and Hoogendoorn 
(1986). 

Recently, Goldstein & Wang (1984) have pointed out the importance of 
temperature-dependent thermophysical properties in determining the onset of 
instability in these flows. The object of the present work is to investigate the stability 
of parallel free-convection flows of variable-viscosity fluids in vertical and inclined 
slots, the importance of which derives from the fact that the temperature dependence 
of the viscosity is the most important non-Boussinesq effect in many applications 
(Carey & Mollendorf 1978). 

The stability of the parallel free-convection flow of a constant-viscosity fluid in a 
vertical slot was first considered by Gershuni (1953) and Batchelor (1954). Several 
others (Rudakov 1966, 1967; Vest & Arpaci 1969; Gill & Kirkham 1970; Birikh et al. 
1972; Korpela, Goziim & Baxi 1973; Ruth 1979) have subsequcntzly studicd thc 
problem, both experimentally and theoretically. In the vertical case. there is a 
preferred orientation for the disturbance planform a t  onset (and ultimately. of the 
secondary flow), and the Prandtl number strongly affects the onset of instability. 
which is steady at  small Pr and oscillatory at larger Pr.  
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FIGURE 1.  Definition sketch and coordinate system for the inclined slot. The spanwise 
coordinate y is perpendicular to the page. 

Work on the stability of this free-convection flow has been extended in several 
directions. One extension has been to study non-Boussinesq effects and, in particular, 
the dependence of the viscosity on temperature (Seki, Fukusako & Inaba 1978 ; Chen 
& Thangam 1985; Thangam & Chen 1986; Smith 1988). Another extension has been 
to consider fluid-filled slots arbitrarily inclined with respect to the vertical (Gershuni 
1955; Birikh et al. 1968; Kurzweg 1970; Hart 1971; Hollands & Konicek 1973; 
Korpela 1974; Ruth 1980; Ruth, Hollands & Raithby 1980; Goldstein & Wang 
1984). I n  a theoretical study of the stability of constant-viscosity free-convection 
flows in an inclined box, Hart (1971) found the extremal Rayleigh number for the 
transverse mode to be a multivalued function of the inclination angle 6, measured 
from the vertical (figure l),  in a small range of S near 66" a t  Pr = 6.7 (corresponding 
to water). For inclined layers with Pr = 6.7 heated from below, the onset of 
instability occurs via the transverse mode when 6 G 2'. The range of S for which the 
transverse mode is critical is larger (6 G 19') for Pr = 0.71 (air). (Transverse and 
longitudinal modes correspond to disturbances with no y-dependence and x- 
dependence, respectively. See figure 1 for the coordinate system.) 

Previous work on the stability of free-convection flows of constant-viscosity fluids 
in vertical and inclined slots and of variable-viscosity fluids in vertical slots has 
raised a number of unresolved questions. In  the constant-viscosity case, points on 
which previous workers disagree or the results are otherwise in doubt include: 

(1)  the disagreement among theoretical predictions of the transition Prandtl number, 
Prtr at which the preferred mode of instability of the free-convection flow in a vertical slot 
changes from steady to oscillatory. Reported values include 12.CL12.5 (Brenier, Roux 
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& Bontoux 1986), 12.7 (Korpela et al. 1973), 11.41- (Gershuni & Zhukhovskii 1976) 
and 25 (Thangam & Chen 1986) ; 

(2) the theoreticalfinding by Ruth (1980) of a ‘virtual discontinuity ’ in the dependence 
on Pr of the Rayleigh number for the transverse mode for an inclined slot. We shall show 
that this is closely related to the closed disconnected neutral curves (CDNC) 
discovered by Hart (1971). We shall also investigate whether there are conditions 
for which flows corresponding to Rayleigh numbers lying above the CDNC are in 
fact stable with respect to all two-dimensional (longitudinal and transverse) 
disturbances. 

For free-convection flow of a variable-viscosity fluid in a vertical slot, questions arise 
regarding : 

(3) how the functional form of the viscosity-temperature relation p(T) affects the 
stability. This question is also of interest in relation to the experimental work of Seki 
et al. (1978) and Chen & Thangam (1985) using transformer oil and aqueous glycerol 
solutions (see (4) below) and in connection with the assertion of Thangam & Chen 
(1986) that the stability criteria are independent of p ( T )  for Pr < 100. 

(4) the systematic discrepancies between the experimental and theoretical results of 
Chen & Thungam (1985) for the onset of instability. One possible explanation relates 
to their use of an exponential approximation p J T )  = S exp ( -sT) to the actual 

The foregoing questions and the remarks of Goldstein & Wang (1984) provided the 
original motivation for the present work. We use linear stability theory to address 
these questions and related issues concerning the onset of instability in free- 
convection flows of variable-viscosity fluids, including aqueous glycerol solutions, in 
vertical and inclined slots. To the best of our knowledge, the stability of free- 
convection flows of variable-viscosity fluids in inclined slots has not been previously 
investigated. 

The problem formulation and basic state are presented in $2. The linear stability 
analysis is described in $3. The physical properties of aqueous glycerol solutions are 
discussed in $4. Points (1)-(3) above and related issues are addressed in $ 5 ,  followed 
by a discussion of (4) in $6. 

AT) .  

2. Formulation and the basic state 
We consider the stability of two-dimensional free-convection flow between two 

perfectly conducting plates separated by a gap d and maintained at  constant 
temperatures differing by A T ,  as shown in figure 1. The plates are inclined a t  an angle 
S to  the vertical. We choose a Cartesian coordinate system, where the x- and z-axes 
are parallel and normal to the plates, respectively. The origin of the coordinate 
system is located in the midplane of the layer. We assume that all physical properties 
of the fluid are constant except the dynamic viscosity p,  which is an arbitrary 
function of temperature, and the density p,  which is taken to be constant except in 
the body-force term of the momentum equation, where i t  is allowed to depend 
linearly on temperature, according to 

7 Unfortunately, the expansion functions used in the Galerkin procedure of Gershuni & 
Zhukhovitskii are not part of a complete set, as previously shown by Gallagher (1969). 
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where po is the density a t  the reference temperature To and a is the thermal 
expansivity. The subscript 0 denotes midplane values of variable quantities. 

The governing equations are taken to be the spanwise component of the vorticity 
transport equation (because the linear stability analysis can be restricted to two- 
dimensional disturbances as discussed in $3) and the energy equation with the 
viscous-dissipation term neglected. We use d as the characteristic length, AT as the 
characteristic temperature, and the thermal diffusion time d 2 / K  [where K = k / ( p o  c p )  
is the thermal diffusivity, k is the thermal conductivity, and c p  is the specific heat] 
as the characteristic time. The non-dimensional equations are 

= f V 2 u - R a  
1 Dw 

Pr Dt 
-~ 

Dl9 
Dt 
- = vze, 

where V2 = a2/ax2+ a2/az2,  w = CIu/i3z-aw/i3x is the spanwise vorticity component, 
Ra = ( p o a g A T d 3 ) / ( p o ~ )  is the Rayleigh number, Pr = p o / ( p o ~ )  is the Prandtl 
number, 0 = (T- %)/AT is the dimensionless temperature, and f (0) = p ( q  + 0 AT)/ 
po is a dimensionless function. The boundary conditions are 

u = w = O  a t z = + &  (2.3) 

0 = T t  atz=i-i .  (2.4) 

These equations admit a basic solution which consists of a parallel flow in the 2- 
direction, u = (Ub, 0,O) with a temperature distribution Bb(z) = -2. The velocity 
profile satisfies 

(2.5) -[f(eb) d2 21 = ~a cos 8. dz2 

For a given viscosity-temperature relation f (@),  (2.5) can be integrated to obtain 
ub, subject to  the no-slip boundary conditions (2.3) and the global continuity 
constraint 

3. Linear stability analysis 
The Squire transformation developed by Gershuni & Zhukhovitskii (1969) for a 

constant-viscosity fluid in an inclined slot can be easily extended to the variable- 
viscosity case. However, as pointed out by Hart  (1971), even in the constant- 
viscosity case there is no Squire’s theorem, in the sense of Gage & Reid (1968). That 
is, two-dimensional disturbances are not always more unstable than three- 
dimensional ones with the same total wavenumber. Thus, as will be discussed in $5, 
stability of the basic state with respect to  small two-dimensional transverse waves 
does not guarantee stability with respect to infinitesimal oblique disturbances. This 
is because for the transverse mode there may be a CDNC lying below the minimum 
of the ‘primary’ neutral curve, as described by Pearlstein (1981) in another context. 
Thus, in addition to the semi-infinite range of Ra lying below the globally minimum 
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value of Ra, there may also be a finite range of Ra lying between the primary neutral 
curve and the CDNC, in which the flow is linearly stable with respect to arbitrary 
transverse disturbances, but is linearly unstable with respect to oblique disturbances. 

Nevertheless, the stability analysis can be restricted to t.wo-dimensional 
disturbances (longitudinal rolls or transverse waves) because the CDNC is found only 
for Combinations of Pr and 6 for which the longitudinal mode becomes unstable a t  a 
Rayleigh number lying below the minimum of the CDNC. Gershuni & Zhukhovitskii 
(1969) and Kurzweg (1970) showed that the criterion for onset of the longitudinal 
mode in an inclined slot is easily obtained from the Rayleigh number for onset of 
convection in a horizontal layer. Their result carries over directly to the variable- 
viscosity case. For fixed 6, the Rayleigh number a t  which the flow first becomes 
unstable with respect to longitudinal rolls is given by 

Ra,,,(6) = Ra,,,(9O0)/sin 6. (3.1) 

Here, Ra,,,(90') is the critical Rayleigh number a t  which convection sets in for a 
horizontal layer (6 = 90') with the same f (8). In  the inclined case, the critical 
Rayleigh number Ra,,,,(S) will be the smaller of Ra,,,(&) and Ra,,(S), where Rat,,(6) 
is the smallest Ra a t  which the flow is linearly unstable with respect to transverse 
waves. In  the cases examined in $5, the CDNC occurs only for combinations of Pr and 
6 for which longitudinal rolls are unstable a t  a smaller Ra, so that the flow is stable 
only in a semi-infinite range of Ra. Thus, only one value of Ra, namely Racrit, will 
be required to specify the stability criteria, unlike the other cases in which CDNCs 
have been found (Pearlstein 1981; Pearlstein, Harris & Terrones 1988). The 
remainder of the analysis will therefore be devoted to the determination of Rat,&. 

Decomposing the velocity and temperature into 

[u, w, 81 = [ub + u', 0 + w' 7 8, + el] 1 (3.2) 

where the prime denotes the disturbance quantities, we characterize u' by a stream 
function $' 

(3.3a, b) 

and consider disturbances of the form 

[$', el] = [i, 4 exp (ipx+ at), (3.4a, 6) 

where p is the (real) wavenumber in the x-direction and u is the temporal growth 
rate, which in general is complex. Substituting (3.2)-(3.4) into (2.1) and (2.2) and 
retaining only first-order terms, the linear disturbance equations can be written 
as 

f (eb) [ ( D 2 - - $ ) 2 8 1 - ~ [ U b ( D z - ~ z ) 8 - ( D 2 U b )  iP 81 

- 2 [ D O f  ('b)] (D3-p2D) 8+LD;f (8b)l (D2+-$) 4 
+ {Ra cos 6 + 2[D,f(Ob)] D2ub - 2[Di f (O,)] Dub} De" 

- {ip Ra sin 6- [Do f (O,)] D3u, + 2[Di f (s,)] D2u, 

- [ D ~ ~ ( ~ , ) ] D U ~ - [ [ D , ~ ( ~ , ) ] D ~ , ( D ~ + ~ ~ ) } ~ - ~ ( D ~ - ~ ~ ) ~  Pr = 0, (3.5) 

1 "  

(D2-p2)6-ip8-ipub8-a8 = 0, 

where D = d/dz and D, = d/d8. 
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The boundary conditions are 

dd 1 

dz 
q 5 = - = 8 = 0  at z = k $  (3.7a-c) 

We note that, by setting 6 = 0, (3.5) and (3.6) reduce to the linear disturbance 
equations for the vertical-slot pase siudied by Thangam & Chen (1986). 

The disturbance quantities 9 and 8 are expanded in terms of complete sets of trial 
functions 

m 

d(z) = an+n(z)  13.8) 

and ;(*) = X b,B,(z) (3.9) 

n-1 

m 

n-1 

that satisfy the homogeneous boundary conditions (3.7), where the functions 

cosh (a, z )  
cosh (a,/2) 

sinh (a ,  z )  
sinh (a,/2) 

- sin (a,, z )  
sin (a,/2) 

(n odd) 

(n even) 

are described by Chandrasekhar (1961), the constants a, are zeros of 

tanh ( 4 2 )  +tan ( 4 2 )  = 0 

coth ( 4 2 )  -cot (an/2) = 0 

(n odd), 

(n even) 

and the functions 8, are given by 
cos (nnz) (n odd) 

sin (nm) (n even). 
@n(z)  = 

The expansions (3.8) and (3.9) are substituted into the disturbance equations (3.5) 
and (3.6), and a Galerkin method, in which the residuals are required to be 
orthogonal to the trial functions, is used to obtain an infinite number of linear 
homogeneous algebraic equations for a, and b, (Finlayson 1972). We then seek the 
value of Ra at which infinitesimally small transverse disturbances of all wavenumbers 
decay, except for those a t  one (or possibly several) critical wavenumber(s), which are 
neutral (i.e. disturbances neither grow nor decay). In  order to obtain a finite number 
of linear homogeneous algebraic equations, we truncate expansions (3.8) and (3.9) a t  
M and N terms, respectively, multiply (3.5) by #?(l < j  < M )  and (3.6) by Sj (1 < j  
< N ) ,  and integrate from z = -$ to i. The integrals are performed numerically 
(Gaussian quadrature), thus allowing for f(8) to depend arbitrarily on temperature. 
We are left with a matrix eigenvalue problem of the form 

(A+aB)X=O, 

where A and B are known matrices and X is a vector containing the unknown 
coefficients a, and b,. 

This generalized matrix eigenvalue problem can be solved by standard numerical 
techniques (see, for example, Garbow et al. 1977). The eigenvalues cr depend on the 
inclination angle 6, the Rayleigh number Ra, the Prandtl number Pr, the 
wavenumber p and the viscosity-temperature relation f(8). For a given f(8) and set 
of parameters 6, Ra, Pr, p, the number of eigenvalues is equal to the sum of the 
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FIGURE 2 .  Temporal growth rate as a function of the truncation parameter M.  f(0) = exp (-0), 
Ra = 2.6 x loE, Pr = 100, = 4.25, 6 = 0'. 

numbers (M and N )  of trial functions used in (3.8) and (3.9), respectively. We note 
that the basic free-convection flow [which depends on Ra, f(0) and S] is unstable if 
for any /3 there is a value of a lying in the right half-plane. We seek the value Rat,, 
for which transverse disturbances decay for all /3, except a t  one or more 
wavenumbers for which some eigenvalues lie on the imaginary axis with no a in the 
right half-plane. 

We take the truncation parameters M and N to be equal. For each combination 
of Ra and /3, we increase M and N by two each until both the real and imaginary parts 
of the a having the largest growth rate differ by less than 1 % for three successive 
even values of M .  The stringency of this criterion is justified by inspection of figure 
2, which shows the growth rate (real part of the least stable or most unstable a) as 
a function of the truncation parameter M (or N )  for a wavenumber near the vertical 
asymptote of the neutral curve, with Ra near the neutral curve. In this extreme case, 
we have carried the calculation to 58 terms to demonstrate that satisfaction of the 
1 % convergence criterion (at M = 48) does indeed correspond to a converged 
solution. Notice that the 1 % convergence criterion is not met until 48 terms are used 
in expansions (3.8) and (3.9). False convergence (of a type less readily detectable 
than that reported by Denn 1975) would have been mistakenly accepted a t  20 terms 
had we set the criterion to be, say, 2 %. We would have erroneously concluded that 
the basic flow with Ra = 2.6 x lo6, 6 = 0, andf(0) = exp ( -  0) was unstable for Pr = 
100 with respect to transverse disturbances with p = 4.25, whereas in fact it  is not. 
A convergence criterion more stringent than 1?40 would increase the cost 
significantly ; we feel that the present choice is a good one. For points near Ratra and 
the corresponding /3, fewer than 30 terms are normally required to meet the 1% 
convergence criterion. All calculations were performed with 64-bit precision 
arithmetic. 

For a fixed /3, the marginally stable point(s) on the neutral curve is (are) obtained 
by iteratively adjusting Ra (using bisection or the secant rule to drive the growth 
rate to zero) until two successive values of Ra differ by less than 0.1 YO. We refer to 
this as a vertical iteration. 

To locate an extremal point on the neutral curve, we fix Ra and determine the 
value of /3 (from among ten equidistantly spaced values, typically in the range 0.5 
</3< 5.0) for which the growth rate is largest. We call this a horizontal 
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(wavenumber) traverse. If none of these values of p yields a positive growth rate, 
then Ra is doubled, and the horizontal traverse is repeated until an unstable Ra is 
located. Because the bisection or secant rule used in the vertical iteration is a two- 
point scheme, we need a second value of Ra for which the growth rate is known. This 
is obtaified by halving Ra (possibly more than once) until a stable value of Ra (at the 
same p )  is found. The vertical iteration then yields a point on the neutral curve. The 
extremal point is finally located by an alternating sequence of horizontal traverses 
and vertical iterations, with the horizontal traverses covering ten points bounded by 
the values of p from the previous horizontal transverse which were adjacent to the 
p used in the immediately preceding vertical iteration. This process is continued until 
the neutral values of Ra obtained on successive vertical iterations differ by less than 
0.1 %. 

Since there may be more than one local minimum on a neutral curve or there may 
even be more than one neutral curve, it is necessary to ensure that the extremal 
Rayleigh number obtained is the critical one. To this end we perform a horizontal 
traverse a t  the first extremal Rayleigh number obtained. Wavenumbers greater and 
less than the extremal p are checked to  see if an unstable region exists to the left or 
right of the known extremum. If an unstable region is detected, the procedure 
described above is repeated to obtain the minimum extremal Rayleigh number 

When the transverse wave instability sets in as a stationary disturbance, points on 
the neutral curve correspond to cr = 0. The generalized eigenvalue problem then 

( P + R a  Q)  Y = 0, becomes 

where Ra is the eigenvalue. This requires much less computation since one need not 
iterate on Ra in order to determine points on the Ra-p neutral curve. 

As a check on our numerical scheme, the calculation of Stengel, Oliver & Booker 
(1982) for a variable-viscosity fluid in a horizontal slot was repeated by setting 6 = 
90". We used the exponential form of p ( T ) ,  and found the variation of Ratra with 
viscosity contrast (the ratio of viscosity a t  the cold wall to that  a t  the hot wall) to 
be the same as that of the Racrit obtained by Stengel et al. We also calculated Ratra 
for a constant-viscosity fluid in an inclined slot (of infinite spanwise and streamwise 

extent) and obtained excellent agreement with Hart's (1971) numerical results for 
Pr = 6.7 (water) in a finite box of aspect ratio lo4. The values of Ratra we obtained 
for constant-viscosity free-convection flow in an infinite slot a t  6 = 66" and 78" differ 
from those of Hart by less than 2%, which is the accuracy that Hart ascribed to his 
calculation when 14 terms were retained in the expansions. 

Ratra. 

4. Properties of aqueous glycerol solutions 
In our study of the stability of free-convection flows of variable-viscosity fluids, we 

shall devote considerable attention to  aqueous glycerol soh tions, since they have 
been used in several experimental studies (Seki et al. 1978; Chen & Thangam 1985; 
Thangam & Chen 1986). In  most applications, the variation of viscosity with 
temperature is the most important non-Boussinesq effect. Moreover, the viscosities 
of these highly associated liquids deviate considerably from the commonly used 
exponential and Arrhenius b ( T )  = Rexp ( r /T) ]  approximations (Litovitz 1952 ; 
Chen & Pearlstein 1987). For a 90% glycerol solution and 0 < T < 100 "C, the 
maximum errors incurred by use of the exponential and Arrhenius approximations 
are 47.25 % and 29.47 %, respectively. 
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For a nominally motionless horizontal layer, we have found (Chen & Pearlstein 
1988) that the exponential form used to approximate the actual y (T)  data can be 
responsible for errors considerably greater than the uncertainty in careful 
measurements of ATcrit. For concentrated aqueous glycerol solutions with To = 25 "C 
and AT = 20 "C, the error is on the order of 3%, while for To = 50 "C and AT = 
100 "C, the error is on the order of 15%. 

When the basic state is not motionless, we might expect the form of y(T) to be 
more important, because the onset of secondary flow may now occur through a 
hydrodynamic mechanism. Also, the linear disturbance equations contain a third 
derivative of y with respect to T ,  so tha t  the stability of the base flow might be 
expected to depend more sensitively on the exact form of y (T) .  

Given that the exponential and Arrhenius forms poorly approximate y (T)  for 
aqueous glycerol solutions, and the potential sensitivity of the stability analysis to 
small errors in y (T) ,  we have developed a four-parameter fit of the form (Chen & 
Pearlstein 1987) 

y (T)  = ~ e ~ p ( ~ / T 3 + ~ T + G / T ) ,  

where T is the absolute temperature. This is based on the Litovitz (1952) 

y (T)  = Vexp (v /T3) ,  

Arrhenius, and exponential forms, where E ,  F, G ,  and H are parameters (depending 
on solution composition) determined by least-squares fitting of the data of Segur & 
Oberstar (1951). It is clear that Ratra depends on both AT and To. We take To = 

20 "C for the glycerol-water solutions considered. 
The specific heats c p  of aqueous glycerol solutions are obtained from the lineal 

relation c,(y) = ycp,g + (1 - y) cP,,, proposed by Segur (1953), where y is the masf 
fraction of glycerol, and cp,g and cp,w are the specific heats of pure glycerol and water 
respectively. The former is calculated from the formula given in Touloukian 8; 
Makita (1970) while c ~ , ~  is taken from Weast, Astle & Beyer (1986). The computec 
values of c,(y) agree well with the experimental data of DiPaola & Belleau (1975) foi 
aqueous glycerol solutions. They also agree well with the fitted data of Ved 
hanayagam, Lienhard &, Eichhorn (1979) after mass fraction in that paper ir 
corrected to mole fraction (private communications, J. H. Lienhard IV 1986, M 
Vedhanayagam 1986). The thermal conductivity data are taken from Segu! 
(1953). 

5. Results and discussion 
In the following, we present and discuss results bearing on the issues raised in $ 1 

The disagreement in previous calculations of Prtr for free-convection flow of I 

conatant-viscosity fluid in a vertical slot (point 1) is addressed in $5.1. In  $5.2, poin 
( 2 )  is discussed in terms of the multivalued Rat& curve for a constant-viscosit! 
fluid in an inclined slot, and an explanation regarding the 'virtual discontinuity' ii 
Ratra reported by Ruth (1980) is given. We also elucidate the sequence by which thi 
number of neutral curves changes from one when S = 0 to infinity when 6 = 90". Thc 
various issues raised in point (3) of $ 1  are discussed in $5.3, where we also investigati 
the onset of secondary motion in a vertical slot occupied by a glycerol-water solutioi 
for which y(T)  cannot be accurately correlated by the exponential or Arrheniu, 
forms. Finally, results for the stability of free-convection flows of variable-viscosit; 
fluids in inclined slots are presented in $5.4. 
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5.1. Constant-viscosity Jluid in a vertical slot 

For free-convection flow of a constant-viscosity fluid in a vertical slot, the onset of 
instability may occur through either monotonically growing or oscillatory dis- 
turbances (Thangam & Chen 1986; Bergholz 1978). The two mechanisms have been 
described by Thangam & Chen, and can be briefly summarized as follows. The steady 
(i.e. monotonic) mode predicted at  low Pr corresponds to onset via an instability of 
the parallel free-convection shear flow. Buoyancy is important only in setting up the 
basic state, and is not involved in the instability mechanism. At higher Yr ,  the 
oscillatory instability which they predicted and experimentally observed involves 
the buoyancy force in a more essential way. 

The transition from the monotonically growing mode to  the oscillatory mode has 
been studied by a number of authors. We find 12.4 < Prtr < 12.5, in excellent 
agreement with the value of 12.7 reported by Korpela et al. (1973), and the range 
12.0 < Prtr < 12.5 obtained by Brenier et al. (1986). This value agrees less well with 
the values of 11.4 and 25 reported by Gershuni & Zhukhovitskii (1976) and Thangam 
& Chen (1986), respectively. The slight difference between our result and that of 
Korpela et al. (1973) may be attributed to  our use of a fine wavenumber traverse in 
which the wavenumber range is iteratively subdivided down to an increment of 
0.001. 

Figures 3(a)-3(c) show the neutral curves at Prandtl numbers 12.5, 20, and 100, 
respectively. I n  figure 3(a,  b) the neutral curve that lies on the larger wavenumber 
side corresponds to steady onset while the one to the left corresponds to oscillatory 
onset. At Pr = 12.5, the extrema of both neutral curves occur at virtually the same 
Grashof number 6% = Ra/Pr .  As Pr increases, the oscillatory neutral curve grows in 
size while the steady neutral curve remains almost unchanged, as shown in figure 
3 (b).  For the steady neutral curve, the insensitivity of Gr to Pr is to be expected since 
Gr is equivalent to the Reynolds number (Re) in the isothermal parallel shear flow 
problem, where the critical Re is independent of Pr.  Figure 3 ( c )  shows that, above a 
certain Pr,  the two neutral curves intersect. The intersection is not a bifurcation 
point since the wave speed, Im ( C T ) / ~ ,  on the oscillatory neutral curve does not vanish 
there. I n  addition to quantitative differences, the neutral curves of Thangam & Chen 
(1986) differ topologically from ours (compare our figure 3b and their figure 4 a t  
Pr = 20). Also, when our steady and oscillatory neutral curves are connected, the 
intersection is a t  a cusp (figure 3c) ,  rather than through a smooth connection near the 
minima. For some Pr,  our neutral curves appear to be disconnected (figure 3a, 6) .  We 
note that the steady and oscillatory neutral curves reported for various Pr by Birikh 
et al. (1972), Bergholz (1978), and Shaaban & Ozisik (1983) are qualitatively similar 
to ours, although the trial functions used by Birikh et al. do not form a complete set, 
the basic state considered by Bergholz includes a streamwise temperature gradient, 
and the equation of state used by Shaaban & Ozisik includes a density maximum. 

5.2. Constant-viscosity Jluid in a n  inclined slot 

Unlike those in vertical slots, parallel free-convection flows in inclined slots can 
become unstable via either longitudinal or transverse disturbances. For an inclined 
layer heated from above, the free-convection flow can still be unstable with respect 
to transverse disturbances, although it  is stable with respect to longitudinal 
disturbances since the buoyancy force in this case is stabilizing. When studying the 
stability of free-convection flows in an inclined slot heated from above, there are two 
ways of presenting the results, as discussed by Hart  (1971). The inclination angle 6 
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FIGURE 3. Neutral curves for a constant-viscosity fluid in a vertical slot. (0 on neutral curve 
denotes a computed (p, Ra) pair.) (a )  Pr = 12.5, ( b )  20.0, ( c )  100.0. Kote that  the neutral curves are 
disconnected for small Pr.  

and temperature difference AT can be chosen as positive and negative, or negative 
and positive, respectively. The former yields negative values of Ra, corresponding to 
heating from above. We present results for Pr = 6.7 (water) in an inclined slot in this 
way in order to illustrate that there is another (disconnected) neutral curve on the 
opposite side of the Rayleigh-number axis, as shown in figure 4. The rest of our 
results will be presented in terms of positive AT. 
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Figure 5 shows the stability boundary for Pr = 6.7, for which results have been 
presented for positive AT over -90" < S < 90" by Hart (1971). The S-shaped 
character of the upper branch of the transverse mode near S = 66" found by Hart 
deserves some additional comment. For 6 < 65" with AT positive, there is a single 
unimodal neutral curve, which assumes a minimum value a t  Perit x 3.1. This neutral 

FIGURE 4. Neutral curves for a constant-viscosity fluid at 6 = 30", Pr = 6.7. Here, we have allowed 
,AT (and hence Ra) to assume positive and negative values, while keeping the angle of inclination 
6 positive. 

FIGURE 5. Stability boundary for a constant-viscosity fluid with Pr = 6.7 in an inclined slot. The 
flow is stable in the region between the longitudinal mode and the lower transverse mode, and for 
0 < 6 < 2', between the two transverse modes. . . * . ' ,  longitudinal mode ; - - - - -, transverse 
mode. 
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FIGURE 6. Neutral curve(s) for a constant-viscosity fluid with Pr = 6.7 at various 6. Kote tha t  the 
neutral curve separates into two disconnected neutral curves as 6 decreases below 68'. The CDNC 
vanishes at  a point for 6 % 65.7". (a )  6 = 65.8', ( b )  67.0", (c) 67.8", ( d )  68.0'. 

curve, which is very similar to that in the Rayleigh-BBnard problem, will be referred 
to as the primary neutral curve. A t  larger 6, figure 6 ( a d )  shows a sequence of neutral 
curves for inclination angles between 65.8" and 68". At 6 = 65.8", a CDNC appears 
below the primary neutral curve. This CDNC grows, while the minimum Ra on the 
primary neutral curve descends as 6 increases. These two neutral curves eventually 
merge smoothly at 6 = 68", as shown in figure 6 ( d ) .  
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One of the features that occurs in the analysis for an inclined slot but which is 
absent in the vertical case is the existence of a closed disconnected neutral curve for 
the transverse disturbances. 

When a CDNC lies entirely below the minimum of the primary neutral curve, three 
extremal Rayleigh numbers may occur (Pearlstein 1981 ; Pearlstein et al. 1988). The 
first and second extremal Rayleigh numbers correspond to the minimum and 
maximum on the CDNC, respectively, while the third extremal R a  corresponds to the 
minimum on the primary neutral curve. At any Ra between the second and third 
extremal values, the basic state is stable with respect to all transverse disturbances. 
However, in this range of Ra, the present flow is unstable with respect to the 
longitudinal mode, as shown in figure 5 .  Were this not the case, the basic state would, 
however, still have been unstable with respect to  three-dimensional disturbances. 
This is because one can find (through the Squire transformation) three-dimensional 
disturbances with the same total wavenumber p = (/3: +pi)$ which become unstable 
at any Ra lying above the first extremal value. 

We note that there are (isothermal) parallel shear flows (Blennerhassett 1980) in 
which no longitudinal mode lies below the CDNC. In  this case, a successful 
application of Squire's transformation shows that the flow is sometimes unstable 
with respect to three-dimensional disturbances of iiifinitesimal amplitude when it is 
stable with respect to all two-dimensional ones. 

Thus, in the gap between the maximum of the CDNC and the minimum of the 
primary neutral curve, it is of interest to explore the stability of the flow with respect 
to all sufficiently small two-dimensional disturbances. As the two neutral curves just 
discussed correspond to the transverse mode, i t  is only necessary to decide whether 
longitudinal disturbances can grow in this range of Ra. 

The CDNC that appears a t  6 = 66" for Pr = 6.7 lies above Ralon(6So), as shown by 
Hart (1971). Korpela (1974) has computed the crossover angle, Gcro, (below which the 
transverse mode is critical) as a function of Pr (see his figure 3). Thus, in an effort to  
find conditions for which Ralon lies above the maximum of the CDNC, we have 
decreased Pr until the primary neutral curve and CDNC merge (at Pr = 1.75 for 
6 = 65", and Pr = 2.30 for 6 = 66"). In  neither case did Ralon move above the minimum 
of the CDNC. At Pr = 1.75, Ralon is still smaller than Ratra, consistent with Korpela's 
results. For high-Prandtl-number fluids heated from below, the longitudinal mode is 
critical except when the slot is nearly vertical. For fluids heated from below with 
Pr d 0.26, we find that the onset of instability always occurs via the transverse 
mode. This agrees well with a value of 0.24 reported by Korpela (1974) and is 
identical to the value reported by Ruth (1980). We have found no region in the 
(Pr, 6)-space where the CDNC will be physically observable. 

Figure 7 shows the stability boundary for Pr = 0.223 (mercury), which clearly 
illustrates that the transverse mode is the critical one for all 6. As discussed by 
Korpela (1974), RaCrit is no longer a monotonic function of the inclination angle. 

It is well known that the number of neutral curves for the Rayleigh-BBnard 
problem is infinite. To understand how the number of neutral curves changes from 
one (or from two, when a CDNC accompanies the primary one) to infinity as 6 
approaches 90", we let 6 increase beyond 68" for Pr = 6.7. Figure 8(a-d) shows 
schematically the neutral curves a t  various values of 6. The CDNC grows, and after 
merging with the primary neutral curve, a rightward-pointing 'foot ' forms on the 
new 'combined' neutral curve, as shown in figure 8(a) .  At 6 = 84", an indentation 
forms a t  the lower right. Near 6 = 87.5", a new CDNC appears, which then grows and 
ultimately merges with the combined neutral curve. At 6 = 89", another (larger) foot 
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FIGURE 7. Stability boundary for a constant-viscosity fluid with Pr = 0.223 (mercury) in an 
inclined slot. The flow is stable below the transverse mode. . ' . . . , longitudinal mode; - - - - - ,  
transverse mode. 

forms. This process is believed to repeat indefinitely between 6 = 89" and go", with 
the indentations and feet moving upwards toward /3 = 0 and /? = 00, respectively. In  
the limit, an infinite number of neutral curves is formed. 

The 'virtual discontinuity ' in Ratra versus Pr reported by Ruth (1980) a t  Pr = 2.15 
for free convection in a slot inclined at 25" from the horizontal can be explained by 
the appearance of the CDNC. In this case, instead of varying 6 while keeping Pr fixed, 
we vary P r  with 6 fixed at 65". For Pr > 2.15, there is only one neutral curve, which 
we again refer to as the primary one. At Pr = 2.15, as in the Pr = 6.7 case with 6 = 

65.8" described above (figure 6 a ) ,  a CDNC appears below the primary neutral curve. 
This CDNC grows, while the minimum Ra on the primary neutral curve descends 
as Pr decreases. At Pr = 1.75, these two neutral curves merge smoothly together. 
It is now clear that the 'virtua,l discontinuity' at S = 65" discussed by Ruth 
actually corresponds to an S-shaped Rat,,-& curve between Pr = 1.75 and 2.15 in the 
(Ra,,,, Pr)-plane. We have also varied Pr,  with 6 fixed a t  64", 65", and 66". The results 
are presented as three-dimensional views of neutral surfaces (figure 9a-c) in the 
(Ra, p, Pr)-space. At 6 = 64", there is only a single neutral curve in the (Ra,  /?)-plane 
for all values of Pr. At 6 = 65", a CDNC exists in the range 1.75 < P r  < 2.15 as 
discussed above. At 6 = 66", the CDNC exists for all Pr > 2.30, below which it 
merges smoothly into the primary neutral curve. For P r  > 2.30, the CDNC decreases 
in size as Pr increases, but persists and approaches a fixed shape and position in the 
(Ra, /?)-plane as Pr + co. 

We note here that the linear stability of the finite-amplitude longitudinal roll 
solutions for a constant-viscosity free-convection flow in an inclined slot, and the 
transition to three-dimensional motion, have been considered by Clever & Busse 
(1977). 

For a variable-viscosity fluid in a vertical slot, we first consider fluids for which 
,ue(T) = p,,exp [ -a(T-To)] ,  previously studied by Thangam & Chen (1986). The 
dimensionless viscosity-temperature relation can be written as 

5.3. Variable-viscosity fluid in a vertical slot 
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FIGURE 8. Neutral curve(s) for a constant-viscosity fluid with Pr = 6.7 in an inclined slot, shown 
schematically for graphical clarity. (a) S = 80.0", ( b )  84.0°, (c) 87.5", ( d )  89.0'. The sequence of 
CDNC growth and merging is believed to repeat indefinitely in 89" < S < W", leading to an infinity 
of neutral curves for 6 = 90". 

The viscosity contrast is then ec. Figure 10 shows the critical Grashof number 
(Grcrit = Racrit/Pr) as a function of Pr for various values of c .  As discussed above for 
the constant-viscosity case, there is a Prt'(x 12.5) above which the onset of 
secondary flow occurs via oscillatory disturbances. Also, a jump occurs in the critical 
wavenumber, /Icrit, a t  Prt'. For the variable-viscosity case, however, both neutral 
curves are oscillatory. This is because the basic velocity profile is no longer 
symmetric about the midplane; a wave speed is now associated with the 
hydrodynamic mode, as discussed by Thangam & Chen (1986). At Prtr a mode change 
accompanied by a jump in Pcrit occurs in the variable-viscosity case also, as shown 
in figure 11. For each c considered, the critical Grashof number remains almost 
constant for Pr < Prt', which indicates that the instability mechanism is a 
hydrodynamic one. For Pr > P P ,  Grcrit decreases with Pr.  At a much higher Prandtl 
number, we find another jump in the critical wavenumber for c = 1 and c = 3, but 
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FIGURE 9. Keutral surface in (Ra, b, Pr)-space for a constant-viscosity fluid in an inclined slot. (a) 
S = 64", (21) 65", (c) 66". Note the disconnectedness of the Ra-/3 neutral cqrves for sufficiently large 
Pr at S = 65" and 66". (The flat surface in the Pr = 1 plane is not part of the neutral surface and 
has been included for graphical clarity only.) 
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FIGURE 10. Variation of Grcrlt with Pr for f(S) = e x p (  -GO)  in a vertical slot. 0. . '0, c = 0 ;  
A _.___ A , c = 1 ;  . - . - . - . ,c=3.  x---- x ,  c = 5 (0, A, 0, x indicate computed (Pr ,  
GrCri,) pairs). Kote the similarity of the Crcrlt-Pr curves over the central three decades of Pr. 

FIGURE 11. Variation of PCrlt with Pr for f(S) = exp(-cS) in a vertical slot. O . . . O ,  e = 0;  
A-----A,  c =  1; .-.--.-a, c = 3 :  x - - - - x ,  e = 5  (0, A, 0, x indicate computed 
(Pr,P,,J pairs). Kote the discontinuous change in P,,, near Pr = 10 for each value of c shown. 

not for c = 5 or for the constant-viscosity fluid. For c = 1 ,  figure 12 shows a second 
transition in the critical wavenumber, similar to that displayed in figure 3(a).  As in 
figure 3 ( c ) ,  the intersection of two oscillatory neutral-curve branches is not a 
bifurcation point. 

Contrary to the assertion of Thangam & Chen (1966) that variable-viscosity effects 
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FIGURE 12. Neutral curves forf(t9) = exp (4) with Pr = 2100 in a vertical slot. The existence of 
two local minima on the oscillatory neutral curve is accompanied by a discontinuous change in 
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FIGURE 13. Ra,,,, as a function of AT for 99% aqueous glycerol in a vertical slot. - - - - - - ,  
exponential form; . . . . . . , Arrhenius form; -.-.-.- , four-parameter fit. 

are negligible for Pr < 100, we find that for all Pr,  the onset of instability in a fluid 
with an exponent’ial p ( T )  occurs a t  values of Racrit considerably less than those 
predicted using constant p. As the viscosity contrast increases for fixed Pr,  the basic 
state becomes unstable a t  a lower value of Gr,,,, as figure 10 clearly shows. 

To assess the importance of p ( T )  in determining the stability of parallel free- 
convection flow in a vertical slot, we have determined Racrit for three approximations 
to the actual p(T) for 99 YO glycerol as a function of AT across the layer. The results, 
shown in figure 13, indicate that the exponential and Arrhenius forms give good 
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agreement with the predictions using the actual p(T). The maximum variation shown 
(for AT' = SO0) corresponds to a relative error in Racrit of about 4 %. A noteworthy 
feature is that for the vertical slot the relative error associated with the Arrhenius 
form is only about one-half that of the exponential form. This is to be contrasted to 
the onset of motion in a horizontal aqueous glycerol (99 %) layer heated from below 
(Chen & Pearlstein 1988), in which the Arrhenius and actual forms of p(T) gave 
virtually indistinguishable values of Racrit, with the exponential form giving results 
differing by about the same amount (3%) as in the vertical-slot case. 

Clearly, the dependence of Grcrit on the viscosity contrast is not nearly so great as 
might be supposed on the basis of the work on boundary layers (Wazzan, Okamura 
& Smith 1968; Strazisar, Reshotko & Prahl 1977). At low Pr, the values of Recrit 
obtained for c = 0 and c = 3 (corresponding to constant viscosity and a viscosity 
contrast of about 20, respectively) in the present case differ by only about 25 YO. As 
pointed out by Thangam & Chen, the instability mechanism a t  low Pr is identical to 
that for an isothermal parallel base flow with the given velocity profile, previously 
studied by Birikh (1966). We note that these profiles are inflexional and lose their 
stability via an essentially inviscid mechanism. Thus, it is not surprising that a t  low 
Pr the present instability is less sensitive to both the details of the basic velocity 
profile, and the interaction of the disturbances with the viscosity stratification, than 
is the Tollmien-Schlichting mechanism. At higher Pr ,  the inviscid mechanism is 
modified by coupling to the energy balance, and competes with the buoyancy-driven 
instability discussed in $5.1. 

5.4. Variable-viscosity Jluid in an inclined slot 

The Racrit versus S plots discussed in 55.2 (figures 5 and 7) show that the stability 
boundary can have two different topologies in the constant-viscosity case. At high P r  
(e.g. figure 5), the stability boundary consists of two branches : one corresponding to 
the longitudinal mode for S,,, < S < 90" ; and the other to the transverse mode for 
-90" < 6 < S,,,. A t  sufficiently low Pr (figure 7), the stability boundary corresponds 
entirely to the transverse mode. As discussed by Korpela (1974), the transition 
occurs a t  P r  = 0.24, in such a way that for Pr < 0.24, Ratra initially decreases as 6 
decreases from 90" and after passing through a minimum before reaching 6 = 0, 
increases monotonically thereafter. 

For a variable-viscosity fluid, however, the stability boundary can be somewhat 
more complicated, as shown in figure 14(a-e) for a fluid with Pr = 2 having an 
exponential dependence of p on T ,  with different values of the viscosity contrast 
ec. For c = 1, figure 14(a) shows results that are virtually identical to the constant- 
viscosity case for Pr = 2, and are topologically similar to those for Pr = 6.7 (figure 
5). For c = 3 (figure 14b), Ratra has developed a local minimum to the left of S,,,. 
Thus, Racrit is still a monotonic function of 6. For c = 5 (figure 14c), the local 
minimum of Ratra occurs near Scro, which has itself increased. For larger values of c ,  
the local minimum moves to the right of i?,,,, and occurs on the transverse portion 
of the stability boundary (figure 14d for c = 7). Thus, Racrit is no longer a 
monotonic function of 6. Ultimately, the local maximum on the Rat,, curve 
disappears (figure 14e for c = 14) and the stability boundary consists only of a 
transverse branch. The latter situation is topologically similar to that found by 
Korpela (1974) in a constant-viscosity fluid for Pr < 0.24. We note that, for a 
horizontal layer with p(T) = pu,(T) ,  Stengel et al. (1982) have shown that Racrit is a 
unimodal function of c, achieving its maximum value at c = 8. Thus, for c = 14, the 
S = 90" intercept of Ralon is a decreasing function of c. 
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FIGURE 14. Stability boundaries forf(8) = exp ( - c 8 )  with Pr = 2 in an inclined slot. (a)  c = 1, ( b )  
3, ( c )  5, ( d )  7, ( e )  14. . . * - , longitudinal mode ; - - - - -, transverse mode. Note the appearance of a 
local minimum on the Ra,,,S curve, which at larger c leads to the loss of monotonicity by the 
Rae,,-& stability boundary. 
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FIQURE 15. Stability boundary for f(8) = exp ( -  148) with Pr  = 500 in an inclined slot. . . . . . , 
longitudinal mode; - - - - - ,  transverse mode. For this high-Pr case, note the change in the critical 
mode near 6 = 0". 

Figure 15 shows that for larger Pr, Ratra does not become unimodal, even at  very 
large viscosity contrasts. For Pr = 500 and c = 14, the stability boundary consists of 
a (Pr-independent) longitudinal branch over almost the entire range of positive 6, 
and a transverse branch that is critical for -90" < 6 < d,,,. 

For a fluid with Pr  = 2 and p ( T )  = p e ( T ) ,  figure 16 shows Ratra as a function of S 
for four values of c .  We note that as c increases from zero, Ratra develops a local 
maximum in the vicinity of 6 = 66O, where the existence of a CDNC renders Ratra 
multivalued for small c .  As c increases, the local maximum occurs a t  larger values of 
6 (closer to the horizontal), and smaller values of Ra. The multivaluedness is lost 
between c = 1 and c = 3. For Pr = 2 and 1 < c < 7, figure 16 also shows that, as c 
increases, the transverse mode is destabilized for -90" < 6 < 62" and stabilized for 
72" < 6 < 90". In the intervening range of 6, Rut,, is a non-monotonic function of c. 
The effect of increasing c on Ratra at 90" is consistent with the results of Stengel 
et al. (1982) discussed above. 

The viscosity-temperature dependence of many liquids and geophysical materials 
is very well approximated by the Arrhenius form (Iyer 1930; Fowler 1985). Thus, we 
have investigated the error which will occur in using the exponential approximation 
to ,uA(T). As discussed in Chen & Pearlstein (1988), two parameters (which we take 
to be the viscosity contrast and dimensionless temperature difference) are required 
to characterize the dependence of Racrit on pA(T) .  Figure 17 shows, for ATIT, = 0.1 
(corresponding to AT = 30" at room temperature) and a viscosity contrast of e7, that 
values of Racrit predicted by pe(T)  are consistently below those predicted by pA(T) . t  
The relative error, a non-increasing function of 6, is about 5 %  (independent of 6) for 
the longitudinal mode, and decreases from about 17 YO to 9 70 for the transverse mode 
as 6 increases from -85" to S,,,. This difference in the relative errors is consistent 

t One might also use a least-squares fit of p,(!Z') to this pA(!Z'). This gave a viscosity contrast of 
exp (6.992), which was judged to be insufficiently different from the p J T )  used to justify a separate 
stability calculation. 
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F I ~ W R E  16. Ra,,, versus 8 forf(8) = exp (-&) with Pr = 2 in an inclined slot. ~ , c =  1 ;  ..... 
c = 3 .  - - _ _ -  c = 5 ;  - .-.- , c = 7. Note the non-monotonic nature of the Rat,,-& curve for 
c > 3. 
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FIGURE 17. Stability boundaries for a fluid with viscosity contrast of e7, ATIT, = 0.1, Pr = 2. 
- - - - - -  ,exponential form, longitudinal mode ; . . . . . . , exponential form, transverse mode ; -- ---, 
Arrhenius form, longitudinal mode; -.-.-.- , Arrhenius form, transverse mode. Note that the 
relative difference between the predictions using the Arrhenius and exponential forms is 
considerably small for the longitudinal mode than for the transverse mode. 

with the fact that the longitudinal instability is buoyancy-driven, while the 
transverse mode arises from an instability of the parallel shear flow set up by the 
buoyancy force. One expects, and figure 17 confirms, that the buoyancy-driven 
instability is less sensitive to the details of the viscosity stratification. 

We have computed the stability boundaries (Racrit vs. 8) for aqueous glycerol 
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FIGURE 18. Stability boundary for aqueous glycerol (y = 0.8) in an inclined slot. . . . . . , 
longitudinal mode; - - - - -, transverse mode. 

solutions with y = 0.8, 0.9, and 0.99 in an inclined slot. In  figure 18, we present 
results for y = 0.8 and AT = 20 "C; results for other values of y and AT are very 
similar. For a wide range of AT, the stability boundary consists of two parts. For the 
transverse mode, a CDNC still exists near 6 = 66". When the flow is heated from 
below, the longitudinal mode becomes unstable at an Racrit that lies below the 
minimum of the transverse neutral curve over virtually the entire range of positive 
6. As shown in figure 3 of Korpela (1974), the crossover from the transverse to the 
longitudinal mode occurs a t  6 = 1" for Pr = 12. From that figure, and from figure 15 
for a high-Prandtl-number fluid with large viscosity contrast, one may also infer that  
for Pr on the order of 500 or more, S,,, is less than 1". Thus, for a high-Prandtl- 
number fluid in an inclined slot heated from below, one can predict, by means of a 
suitable rescaling (cf. (3.1)), the onset of instability simply from the results for the 
horizontal case with the samef(O), previously considered by Stengel et al. (1982), and 
Chen & Pearlstein (1988). (See the latter for further references.) I n  the range 
-90" < 6 < Gcro, the transverse mode is the only possible source of instability. 

For sufficiently high Pr, instability sets in via the transverse mode only when the 
slot is nearly vertical, or when the layer is heated from above. In  the former case, the 
results are very similar to those for the vertical slot. It is only when the layer is 
heated from above that one needs to perform the linear stability analysis for a high- 
Prandtl-number fluid in an inclined slot. We find that for a given glycerol-water 
solution heated from above with S fixed, Racrit decreases as AT (i.e. viscosity 
contrast) increases. At constant AT, Racrit increases as the glycerol concentration 
increases. 

6. Relationship to previous experimental work 
Given the existence of significant discrepancies in the literature between theory 

and experiment (Chen & Thangam 1985), between various theoretical predictions 
(Brenier el: al. 1986; Gershuni &, Zhukhovitskii 1976; Korpela et al. 1973; Thangam 
& Chen 1986), and the discontinuous variation of Ratra with Pr reported by Ruth 
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Glycerol mass fraction, y 

Remarks 0.7 0.8 0.9 

T y p t  ("C) Chen & Thangam 21.5 22.7 33.4 

AC;;"tt ("C) Chen & Thangam 17.4 31.9 49.1 
A C i t  ("C) Present work, computed using yt 4.0 13.8 28.7 

Ra:;;' x Chen & Thangam, corresponds to A?:$ 4.10 3.42 3.32 
Rap;: x Chen & Thangam, computed using AT:$ 1.51 1.71 1.40 
Rak2; x l O P  Present work, corresponds to 0.94 1.48 1.94 
Razi: x Present work, computed using AT:$ 0.88 1.36 1.67 

b%t! Chen 81. Thangam, computed using AT:;$ 2.39 2.46 2.24 
p. C P f t  2 Present work, computed using AF&it 2.48 2.40 2.26 
p 3  wit Present work, computed using AT:$ 2.36 2.21 2.06 

TABLE 1 .  Comparison of theoretical and experimental values of AT,,,,, Rucrit, and Pcrit 

Lei? Chen & Thangam 3.1 2.9 3.4 

(1980), we devoted considerable effort to analysing these special cases with our 
computer code. On the basis of the excellent agreement between our results for the 
special cases of a constant-viscosity fluid in vertical (Korpela et al. 1973, cf. $5.1), 
inclined (Hart 1971 ; Korpela 1974, cf. §5.2), and horizontal (Stengel et al. 1982, cf. 
Chen & Pearlstein 1988) variable-viscosity fluid layers, we believe that our code is 
correct and that our results are accurate. 

One of the questions outstanding from the work of Chen & Thangam (1985) on the 
stability of the free-convection flow of a variable-viscosity fluid in a vertical slot 
concerns the differences between their measured and computed values of Racrit. The 
experimental values of Racrit were approximately twice the theoretical values 
(computed by their linear stability analysis). 

We have used the four-parameter fit (Chen & Pearlstein 1987) to the p ( T )  
behaviour of concentrated aqueous glycerol solutions to compute the critical 
Rayleigh numbers and wavenumbers in the experiments of Chen & Thangam (1985). 
Our results are shown in table 1.  In a variable-viscosity fluid, AT and Ra are not 
linearly related. We have fixed To a t  its experimental value and computed Racrit in two 
different ways. One method is to use AT,,, (from Chen & Thangam's experiment) to 
obtain the minimum and maximum temperatures in the viscosity relation, and to 
then compute Racrit using that f. The other method involves iterating on AT (with 
Ra computed from its definition in terms of the physical properties and plate 
separation d ) ,  until this Ra lies at  the minimum of the neutral curve. 

In  general, one can see that our values of Racrit and Pcrit, while differing 
substantially from the theoretical predictions of Chen & Thangam, do not exhibit 
significantly better agreement with their experiments. Thus, the disagreement 
between theory and experiment in Chen & Thangam (1985) cannot be completely 
attributed to an error in their analysis, which is probably responsible for the 
differences between their value of Prtr (Thangam & Chen 1986) and those computed 
by Korpela et al. (1973), Brenier et al. (1986), and in the present work (cf. $5.1). 
Neither can the disagreement be attributed to subcritical instability, as the 
experimental values of Racrit exceed those predicted by the linear stability analysis. 

In an effort to better understand the nature of the discrepancy, we have computed 
the stream function corresponding to the neutral eigenfunction of the linear stability 
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FIGURE 19. Disturbance stream function (a )  and base-velocity profile (6) for a 90% 
glycerol-water solution in a vertical slot. AT = 49.1 O C ,  T, = 33.4 "C, and d = 2 em. Note that the 
disturbance is concentrated near the hot wall. 

problem at Perit for the conditions pertaining to the 90 YO glycerol experiment of Chen 
& Thangam. The results are shown in figure 19 (a).  Figure 19 ( b )  shows the computed 
parallel base-velocity profile for the same conditions. In agreement with the 
experimental results of Chen & Thangam, the disturbance is localized in a region 
considerably narrower than the channel. Moreover, the ratio of the thicknesses of the 
relatively undisturbed portions of the flow adjacent to the hot and cold walls appears 
to be in excellent agreement with the flow visualizations of Chen & Thangam. 

These results bear on the suggestion of Chen & Thangam (1985) that the localized 
secondary flow arises as an instability of a base flow having a 'nearly motionless' 
central core region. As discussed by them and Elder (1965), this type of base flow 
occurs in vertical slots of finite aspect ratio at  sufficiently high Ra. This is consistent 
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with the results of Gill & Davey (1969) and Gill & Kirkham (1970) who showed that 
for Pr = O( lOOO), the aspect ratio of 15 used by Chen & Thangam is not large enough 
for the results to be independent of the box length. Our results show that the 
confinement of the disturbance to the central core does not depend on the deviation 
of the basic velocity and temperature distributions from their fully developed 
forms. 

We also remark that the shadowgraph flow-visualization technique employed by 
Chen & Thangam may also be responsible for the apparent discrepancy between 
theory and experiment. As pointed out by Elder, ‘These cells are very weak, and near 
the critical Rayleigh number are extremely difficult to detect, especially when the 
wavelength is large’. The difficulty is exacerbated by the fact that, in a cell of finite 
aspect ratio, onset typically occurs via a breakup of the large unicellular motion into 
two cells of widely disparate sizes, with the larger of the two occupying almost the 
entire length of the slot (Elder 1965). This greatly complicates the detection of 
onset. 

Finally, Seki et al. (1978) conducted an extensive set of experiments in a vertical 
slot of variable aspect ratio using glycerol and a high-Prandtl-number transformer 
oil. We have not undertaken any comparison to their results for several reasons. 
First, the work of Seki et al. was not directed to establishing conditions for the onset 
of secondary flow. No experimental determination of the stability boundary was 
attempted. Thus, at  best one can only determine whether an experimentally unstable 
base flow should be stable or unstable according to linear analysis. More importantly, 
even though p(T) is available for the transformer oil (H. Inaba, private com- 
munication 1986), the temperature differences AT and the average temperatures 
To are not. Thus, with only the Rayleigh numbers reported by Seki et al., the 
variation of p across the slot is unknown, and we are thus unable to compute even 
the basic state. 
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